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In this paper we investigate the nature of the singularity of the Ising model of the four-dimensional cubic
lattice. It is rigorously known that the specific heat has critical exponent �=0 but a nonrigorous field-theory
argument predicts an unbounded specific heat with a logarithmic singularity at Tc. We find that within the given
accuracy the canonical ensemble data are consistent both with a logarithmic singularity and a bounded specific
heat but that the microcanonical ensemble lends stronger support to a bounded specific heat. Our conclusion is
that either much larger system sizes are needed for Monte Carlo studies of this model in four dimensions or the
field-theory prediction of a logarithmic singularity is wrong.

DOI: 10.1103/PhysRevE.80.031104 PACS number�s�: 05.50.�q, 12.38.Gc

I. INTRODUCTION

In dimension D�5 it is known from �1,2� that the Ising
model on the cubic lattice exhibits mean-field critical expo-
nents at the critical temperature. Even earlier it was shown
�3� that the specific heat obeys the mean-field exponent �
=0 for D�4 and that for D�5 the specific heat is in fact
bounded at the critical point. For D=4 the rigorous results
which determine that �=0 are not strong enough to show
that the specific heat is bounded. In fact methods from field
and renormalization theory predict that the specific heat
should diverge as �ln�T−Tc��1/3, but this has not been pos-
sible to prove rigorously. There are thus, at least, two possi-
bilities here, either the specific heat is bounded in D=4 as
well or it diverges logarithmically.

Earlier studies of the critical behavior in four dimensions
include �4–6� using Monte Carlo methods and �7� using se-
ries expansion and extrapolation. There has also been some
recent controversy �8–10� regarding the consistency of field
theoretical predictions and Monte Carlo data.

Using a standard Monte Carlo approach to detect a diver-
gence of the form �ln�T−Tc��1/3 is difficult since the quantity
will remain quite small for a large range of the lattice size L,
thereby making it difficult to use sampled data to clearly
distinguish between different asymptotic behaviors.

In an attempt to get around this problem we have instead
studied the microcanonical density of states of the model,
following the methods used in, e.g., �11,12�. The finite-size
effects of the canonical ensemble have two components; that
coming from the fact that only a certain discrete set of ener-
gies are available in finite discrete systems and that coming
from finite-size effects of the density of states. The microca-
nonical ensemble is affected by only the latter effect.

A divergence in the specific heat means that the second
derivative of the density of states must become zero at the
critical point. The surprising simulation result is that this

value is in fact increasing with the lattice size at the critical
point and the best fit to the data is that it converges to a
nonzero value, thereby also giving a bounded specific heat in
the limit.

In order to make sure that this was not an artifact caused
by our simulation software we wrote two separate programs,
one for the Metropolis algorithm and one using the Wolff-
cluster algorithm �13�, to sample at interleaving lattice sizes;
but no systematic differences could be seen. We also tried to
push the simulations to large lattices, reaching L=80. Our
simulations give estimates for the critical exponents which
agree well with the rigorous mean-field values and a value
for the critical temperature which agrees well with earlier
studies.

Hence our conclusion is that either lattice sizes larger than
L=80 are needed to see the asymptotic behavior of the spe-
cific heat or the specific heat is in fact bounded at the critical
point. Finding a way to settle this issue is of prime impor-
tance since, as discussed in, e.g., �10�, this would have con-
sequences for the renormalization techniques used to bound
the Higgs mass.

II. NOTATION AND BASIC DEFINITIONS

The lattice studied here is the Cartesian graph product of
four L cycles, that is, an L�L�L�L-lattice with
periodic boundary conditions on n=L4 vertices and
m=4L4 edges. We have collected sampled data using
the sampling scheme described in �11� for linear orders:
L=4,6 ,8 ,10,12,16,20,24,32,40,48,56,60,64,80. For
most orders we used the Metropolis single-spin-flip method
with measurements of local energies after every sweep.
Since the flip rate near the critical temperature is about 63%
there will be no strong dependency between measurements
of local energies. For comparison we also employed the
Wolff-cluster method for the cases L=10,20,40,60, flipping
clusters until an expected L4 spins were flipped.

The energy E of a state �= ��1 , . . . ,�n�, with �i= �1, is
defined as E���=��i,j��i� j, with the sum taken over all the
edges �i , j�, and the magnetization M is defined as
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M���=�i�i with the sum taken over all the vertices.
We have two classes of quantities. First the combinatorial

quantities from the microcanonical ensemble which depend
on the energy U. Especially the coupling K is of interest
here, defined as K�U�=−�S /�U where S�U�= �ln a�E�� /n for
U=E /n and a�E� denotes the number of states � at energy E.
How to obtain the coupling from sampled data is described
in detail in �11� and error estimation in �14�.

The canonical or physical quantities are obtained as cu-
mulants, or derivatives of ln Z�K ,H� with respect to K or H
�the external field�, where Z is the partition function. All
quantities are measured with the external field switched off,
i.e., H=0 after the relevant derivative is taken.

At this point we introduce the notation ci= 	�X− 	X
�i
 for
the ith central moment of a random variable X, where 	X
 is
the mean value. The kth cumulant of E is then the kth de-
rivative of ln Z with respect to K, where Z is the partition
function. Recall that the first cumulant is 	X
, the second is
c2�X�=Var�X�, the third is c3�X� and the fourth is
c4�X�−3c2

2�X�. The internal energy is then U�K�= 	E
 /n and
the specific heat is C�K�=Var�E� /n. Note also that the sus-
ceptibility �=Var�M� /n= 	M2
 /n has no local maximum,
whereas the �spontaneous� susceptibility �̄=Var��M�� /n
does. Analogously we define the magnetization as
�= 	M
 /n and the spontaneous magnetization as
�̄= 	�M�
 /n.

III. PHYSICAL QUANTITIES

Let us begin by showing some plots of a few physical
quantities near the critical coupling. Figure 1 shows the mag-
netization �̄�K�. In Fig. 2 we show the specific heat C�K� for
several lattice sizes.

A. Critical points and exponents

First we establish a high-precision estimate of the critical
coupling Kc. This is done by determining the critical points
for a number of different quantities, listed below, for each
system size. The critical points in question are, with one
exception, the locations of various maxima or minima of,
e.g., cumulants. To these points we fitted a simple scaling

law of the form c0+c1L−	. By selecting points for
L�Lmin for different Lmin we can then obtain several �for
Lmin=24,32,40, with a few exceptions� different estimates
of the fitting parameters. As a rule we received very good fits
deeming a higher-order correction term unnecessary. The
sought parameter is of course c0. Taking the median of these
gives a final estimate of Kc for that particular quantity. Re-
peating this for all quantities, a grand total of 15, allows us to
make a statistical analysis of them. We have used the median
as the estimate, with the first and third quartile as error esti-
mates. In short, we take the median of the medians, very
much like in �12�.

The points scale very nicely with the linear order using
only the simple expression above, see Fig. 3. The resulting
estimate is Kc=0.149 694 7�5�10−7. This falls inside the
by now rather old estimate Kc=0.149 65�5�10−5 found in
�15� and agrees with the estimate from �4�.

The critical points in question are the locations of the
following: the maximum of the specific heat C and suscepti-
bility �̄, maximum and minimum of the cumulants c3�E� /n,
c3��M�� /n, �c4�E�−3c2�E�� /n, and �c4��M��−3c2

2��M��� /n,
maximum of ��̄ /�K, � ln �̄ /�K, � ln � /�K, and �Q /�K,
where Q is the Binder cumulant 1− 	M4
 /3	M2
2 and finally
the crossing point between QL and QL/2. See, e.g., �16� for a
discussion of the last four quantities.

The expression above also provides us with estimates of
the exponent 
. The location of a critical point KL

� should
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FIG. 1. �Color online� Magnetization �̄�K� for lattice sizes
L=6,8 ,10,12,16,20,24,32,40,48,56,60,64,80.
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FIG. 2. �Color online� Specific heat C�K� for lattice sizes
L=6,8 ,10,12,16,20,24,32,40,48,56,60,64,80.
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FIG. 3. �Color online� The critical points vs 1 /L with fitted
curves.

P. H. LUNDOW AND K. MARKSTRÖM PHYSICAL REVIEW E 80, 031104 �2009�

031104-2



deviate from Kc as roughly KL
� −Kc�L−1/
, again see �16�.

Repeating the median-of-the-medians approach gives
	=1 /
=2.00�0.03 where the bounds are again based on the
first and third quartiles, thus rendering us 
=0.50�0.01. The
Josephson inequality tells us that ��2−D
, and hence our
midpoint estimate gives ��0�0.04 for D=4 since �=0 �3�
our data are in good agreement with the rigorous results.
Similarly an estimate of �=0.50 is found, and the mean-field
value is �= 1

2 .
Having established an estimate of Kc we can now estimate

the internal energy UL�Kc� and again fit the scaling formula
above to these data for Lmin=24,32,40. The different c0 and
thus the asymptotic values of Uc end up inside the interval
0.770 53�4�10−5.

B. Critical values

Our aim is now to try to distinguish between the two
possible scenarios, either we have a logarithmic singularity
or the specific heat is bounded at Tc. We attempt to do this by
making least-squares fits to the data for two different forms
of the fitting function.

According to scaling theory, see �17�, the maximum spe-
cific heat Cmax is proportional to �3ln L. For L�12 this seems
plausible given our data. In Fig. 4 we show Cmax versus �3ln L
together with a fitted straight line, y=115x−56.7, and indeed
they line up rather convincingly. The reader should note that
Cmax grows very slowly indeed.

For the bounded scenario we try a fit where Cmax is pro-
portional to a power of L. A least-squares fit of both constant
and exponent gives 150.49+180.5L−0.496. We show this in
the inset of Fig. 4. The fact that the exponent is negative
would of course mean that the specific heat is finite in the
limit.

For both models there is some variation in the coefficients
and the exponent if one makes the fit to different subsets of
the data points but no drastic changes. An attempt with
evaluating the specific heat and the susceptibility at the
asymptotic Kc for each linear size instead gave a very similar
behavior to that of their maximum value.

To the eye both fitting functions work reasonably well,
and we simply find that the canonical ensemble data cannot
strongly distinguish the two scenarios.

IV. COMBINATORIAL QUANTITIES

With regards to the microcanonical ensemble the two sce-
narios will be that either K��U� goes to 0 at Uc or it con-
verges to a finite positive value

Figure 5 shows the microcanonical quantity K�U� and in
Fig. 6 its derivative is shown, both together with zoomed-in
versions near the critical energy Uc. Most of the sampling
was done for energies close to the critical one for the given
value of L so the curves become noisier further away from
Uc.

The minima do not at all seem to approach zero as they do
for d=2 �18� and d=3 �12�. In fact the behavior here is
qualitatively different in that the values are actually increas-
ing rather than decreasing.

It is known, see, e.g., �11�, that the specific heat corre-
sponds to 1 /K��U�. Thus limU→Uc

K��U�=0 if and only if
limK→Kc

C�K�=�. Figure 7 shows the minima versus 1 /L
together with a fitted line y=0.004 19−0.0151x, suggesting
that the minimum approaches a maximum 0.004 19.

The optimal exponent of 1 /L, naturally, depends to some
extent on which data points are used. Using a least-squares
fit to different subsets of the data for L�6 gives exponents
between �roughly� 0.9 and 1.5. More specifically, if we check
all subsets of the data with L�6 on between 10 and 12
points a median exponent of 1.25 is received and for c0 the
median value was 0.004 06 with first and third quartiles

12 16 24 32 48 64 80
L

100

105

110

115

120

125

130

C

4 6 8 12 16 2432 48 80 �

60

80

100

120

140

FIG. 4. �Color online� Cmax vs �3ln L and L−0.496 �inset� together
with the fitted curves.
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FIG. 5. �Color online� Coupling K�U� for L�6.
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FIG. 6. �Color online� Coupling K��U� for L�6.
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0.004 02 and 0.004 13, respectively. The extremal values for
c0 are 0.0038 and 0.0044. If we instead use all the data
points for L�8 we obtain the exponent 	=1.147 and
c0=0.004 11.

V. CONCLUSIONS

We have studied the two proposed scenarios for the criti-
cal behavior of the specific heat of the four-dimensional
Ising model. This has been done in both the canonical and
the microcanonical ensembles. We have found that for the
given lattice sizes the canonical ensemble cannot conclu-
sively distinguish between the two scenarios, and in an at-

tempt to circumvent this we have instead turned to the mi-
crocanonical ensemble.

There are two reasons for why the microcanonical en-
semble could give clearer results in this situation, the first
predicted and the second unexpected. First, the canonical
ensemble is expected to have larger finite-size effects than
the microcanonical ensemble. To see this we may consider
an idealized example where, for a finite system, S�U� at each
energy U is identical to the limit as n→�. Here the density
of states has no finite size effects at all, apart from only being
defined at certain discrete set of values of U. However be-
cause of the discrete energies there will still be finite-size
effects in the corresponding canonical ensemble.

Second, a divergent specific heat means that K��U� goes
to 0 at Uc, and as we have found the minimum value of
K��U� is actually increasing rather than decreasing. This
gives us a qualitative signal, rather than a weak quantitative
one, that the specific heat actually converges to a finite value.

Our conclusion is that either much larger systems are
needed to see the asymptotic behavior of this model, and this
possibility can only be ruled out by a rigorous convergence
result or the specific heat is in fact bounded at Uc, thus con-
tradicting the renormalization theory prediction.
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FIG. 7. �Color online� The minimum of K��U� vs 1 /L, together
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